Noble Metal POMs

Noble Metal POMs

Polyoxometalates (POMs, discrete nanosized metal oxo anions) are an increasingly fascinating object of study owing to their enormous structural diversity and unique combination of properties, such as thermal and oxidative stability, tunability of acidity and redox activity, and ability to activate easily accessible “green” oxidants (O2 and H2O2), thus making them attractive for applications in many different areas, for example, in catalysis, magnetism, nanotechnology, and medicine. Although this class of compounds was discovered as far back as 1826, until recently POMs were known predominantly for Group 5 and 6 addenda metals in high oxidation states (e.g. W6+, V5+).

In 2008 we reported the synthesis, structure, and preliminary catalytic studies of [PdII13As8VO34(OH)6]8 (Pd13As8), the first member of a novel subclass of polyoxoanions built exclusively of d8 PdII addenda metal ions. All PdII ions in Pd13As8 retain square-planar coordination geometry, in sharp contrast to all other known discrete POMs, which generally contain metal centers in octahedral environments. Even more recently we have shown the possibility of preparing other hetero-13-palladate derivatives, in which the {AsO4}3- capping fragments in Pd13As8 are replaced by lone-pair-containing {SeIVO3}2- and organic-functionalized {PhAsVO3}2- groups. We also demonstrated the existence of another structural type of polyoxopalladate, [Pd15P10O50]20- (Pd15P10), which comprises 15 PdII addenda ions and adopts the shape of a star pentagon. We also discovered that the Pd12L8 heteropolypalladate shell in the above species can stabilize unusual coordination numbers and geometries for the encapsulated PdII ion, including unprecedented eight-fold cubic coordination. Wickleder et al. reported the solid-state d7 metal cluster anion [PtIII12O8(SO4)12]4-, which is composed of six dumbbell-shaped [Pt2]6+ ions linked by oxo and sulfate bridges.

There is great interest in soluble late-transition-metal oxo complexes as potential models of so-called MOx “suboxide clusters”, which have been proposed to be crucial intermediates in noble-metal-based heterogeneous catalytic oxidation systems. Furthermore, noble-metal-based materials are important as catalysts in numerous industrially relevant processes and devices, including low-temperature and environmentally benign O2-based oxidations, reforming, automobile converters, and fuel cells. This background warrants an extension of our polypalladate(II) work to other d8 metal ions (e.g. platinum(II), gold(III)).

Noble Metal in Action

record palladium metalate, Kortz, VIP Angewandte Chemie International EditionUlrich Kortz, Chemistry professor at Jacobs University, and his team report the synthesis of a novel, discrete noble metal-oxide, containing a record number of 22 palladium atoms, as well as two central copper ions. In addition to its high catalytic potential, this {Cu2Pd22} cluster compound also exhibits very unusual intramolecular magnetic interactions. The study has now been published as a “Very Important Paper” in the Angewandte Chemie International Edition.

Noble Metal Polyoxometalate Research
featured in Platinum Metals Review

Platinum Metals Rev., 2014, 58, (1), 40

Selected Publications

  • Indium in Polyoxopalladate(II) Chemistry: Synthesis of All-acetate-capped [InPd12O8(OAc)16]5- and Controlled Transformation to Phosphate-capped Double-cube and Mono-cube
    Ma, T.; Yang, P.; Parris, J.; Csupasz, T.; Li, M.-X.; Bányai, I.; Tóth, I.; Lin, Z.; Kortz, U. Inorg. Chem. 201958, 15864-15871. [Read Online]
  • Tetravalent Metal Ion Guests in Polyoxopalladate Chemistry: Synthesis and Anticancer Activity of [MO8Pd12(PO4)8]12– (M = SnIV, PbIV)
    Yang, P.; Ma, T.; Lang, Z.-L.; Misirlic-Dencic, S.; Isaković, A. M.; Bényei, A.; Čolović, M. B.; Markovic, I.; Krstić, D. Z.; Poblet, J. M.; Lin, Z.; Kortz, U. Inorg. Chem. 201958, 11294-11299. [Read Online]
  • 224Ra-labeled Polyoxopalladate as Putative Radiopharmaceutical
    Gott, M.; Yang, P.; Kortz, U.; Stephan, H.; Pietzsch, H.-J.; Mamat, C. Chem. Commun. 201955, 7631-7634.  [Read Online]
  • Discovery of Polyoxo-Noble-Metalate-Based Metal-Organic Frameworks
    Bhattacharya, S.; Ayass, W. W.; Taffa, D. H.; Schneemann, A.; Semrau, A. L.; Wannapaiboon, S.; Altmann, P. J.; Pöthig, A.; Nisar, T.; Balster, T.; Burtch, N. C.; Wagner, V.; Fischer, R. A.; Wark, M.; Kortz, U. J. Am. Chem. Soc. 2019141, 3385−3389. [Read Online]
  • Palladium(II) Incorporation in the All-Inorganic Cryptand [As4W40O140]28−: Synthesis and Structural Characterization of [Pd2Na2KAs4W40O140(H2O)]21−
    Lin, Z.; Izarova, N. V.; Mehari, F. T.; Kortz, U. Z. Anorg. Allg. Chem.  2018644, 1379–1382. [Read Online]
  • Discovery and Evolution of Polyoxopalladates
    Yang, P.; Kortz, U. Acc. Chem. Res. 2018, 51, 1599−1608.[Read Online]
  • Tuning of Polyoxopalladate Macroanionic Hydration Shell via Countercation Interaction
    He, J.; Li, H.; Yang, P.; Haso, F.; Wu, J.; Li, T.; Kortz, U.; Liu, T. Chem. Eur. J. 2018, 24, 3052–3057. [Read Online]
  • Rational Design of Organically Functionalized Polyoxopalladates and Their Supramolecular Properties
    Yang, P.; Li, H.; Ma, T.; Haso, F.; Liu, T.; Fan, L.; Lin, Z.; Hu, C.; Kortz, U. Chem. Eur. J. 2018 , 24, 2466–2473. [Read Online]
  • Size and Charge Effect of Guest Cations in Formation of Polyoxopalladates: A Theoretical and Experimental Study
    Lang, Z.; Yang, P.; Lin, Z.; Yan, L.; Li, M.-X.; Carbó, J. J.; Kortz, U.; Poblet, J. M. Chem. Sci. 2017, 8, 7862–7872. [Read Online]
  • Discrete Silver(I)-Palladium(II)-Oxo Nanoclusters, {Ag4Pd13} and {Ag5Pd15}, and the Role of Metal–Metal Bonding Induced by Cation Confinement
    Yang, P.; Xiang, Y.; Lin, Z.; Lang, Z; Jiménez-Lozano, P.; Carbó, J. J.; Poblet, J. M.; Fan, L.; Hu, C.; Kortz, U. Angew. Chem. Int. Ed.  2016, 55, 15766 –15770. [Read Online]
  • The Polyoxo-22-palladate(II), [Na2PdII22O12(AsVO4)15(AsVO3OH)]25–
    Izarova, N. V.; Lin, Z.; Yang, P.; Kondinski, A.; Vankova, N.; Heine, T.; Kortz, U. Dalton Trans. 2016, 45, 2394–2398[Read Online]
  • Molecular spin qubits based on lanthanide ions encapsulated in cubic polyoxopalladates: design criteria to enhance quantum coherence
    Baldoví, J. J.; Rosaleny, L. E.; Ramachandran, V.; Christian, J.; Dalal, N. S.; Clemente-Juan, J. M.; Yang, P.; Kortz, U.; Gaita-Ariño, A.; Coronado, E. Inorg. Chem. Front. 2015, 2, 893-897. [Read Online]
  • Exploring the Effect of Surface Functionality on the Self-Assembly of Polyoxopalladate Macroions
    Haso, F.; Yang, P.; Gao, Y.; Yin, P.; Li, H.; Li, T.; Kortz, U.; Liu, T.  Chem. Eur. J. 2015, 21, 9048-9052. [Read Online]
  • Alkaline Earth Guests in Polyoxopalladate Chemistry: From Nanocube to Nanostar via an Open-Shell Structure
    Yang, P.; Xiang, Y.; Lin, Z.; Bassil, B. S.; Cao, J.; Fan, L.; Fan, Y.; Li, M.; Jiménez-Lozano, P.; Carbó, J. J.; Poblet, J. M.; Kortz, U. Angew. Chem. Int. Ed.  2014, 53, 11974-11978. [Read Online]
  • The mixed gold-palladium polyoxo-noble-metalate, [NaAuIII4PdII8O8(AsO4)8]11-
    Izarova, N. V.; Kondinski, A.; Vankova, N.; Heine, T.; Jäger, P.; Schinle, F.; Hampe, O.; Kortz, U.  Chem. Eur. J2014, 20, 8556-8560. [Read Online]
  • Polyoxopalladates Encapsulating 8-Coordinated Metal Ions, [MO8PdII12L8]n-
    (M = ScIII, MnII, FeIII, CoII, NiII, CuII, ZnII, LuIII; L = PhAsO32-, PhPO32-, SeO32-)
    Barsukova-Stuckart, M.; Izarova, N. V.; Barret, R. A.; Wang, Z.; van Tol, J.; Kroto, H. W.; Dalal, N. S.; Jiménez-Lozano, P.; Carbó, J. J.; Poblet, J. M.; von Gernler, M. S.; Drewello, T.; de Oliveira, P.; Keita, B.; Kortz, U. Inorg. Chem. 2012, 51, 13214-13228. [Read Online]
  • The Selenite-capped Polyoxo-4-aurate(III), [AuIII4O4(SeIVO3)4]4-
    Xiang, Y.; Izarova, N. V.; Schinle, F.; Hampe, O.; Keita, B.; Kortz, U. Chem. Commun. 2012, 48, 9849-9851. [Read Online]
  • Noble Metals in Polyoxometalates
    Izarova, N. V.; Pope, M. T.; Kortz, U. Angew. Chem. Int. Ed. 201251, 9492-9510. [Read Online]
  • 3d Metal Ions in Highly Unusual Eight-Coordination: The Phosphate-Capped Dodecapalladate(II) Nanocube
    Barsukova-Stuckart, M.; Izarova, N. V.; Barrett, R.; Wang, Z.; van Tol, J.; Kroto, H. W.; Dalal, N. S.; Keita, B.; Heller, D.; Kortz, U. Chem. Eur. J. 2012, 18, 6167-6171. [Read Online]
  • Synthesis and Characterization of the Di-Copper(II)-Containing 22-Palladate(II), [CuII2PdII22PV12O60(OH)8]20-
    Barsukova-Stuckart, M.; Izarova, N. V.; Jameson, G. B.; Ramachandran, V.; Wang, Z.; van Tol, J.; Dalal, N. S.; Ngo Biboum, R.; Keita, B.; Nadjo, L.; Kortz, U. Angew. Chem. Int. Ed. 2011, 50, 2639-2642. [Read Online]
  • A Noble Metalate Bowl: The Polyoxo-6-Vanado(V)-7-Palladate(II) [Pd7V6O24(OH)2]6-
    Izarova, N. V.; Vankova, N.; Banerjee, A.; Jameson, G. B.; Heine, T.; Schinle, F.; Hampe, O.; Kortz, U. Angew. Chem. Int. Ed. 2010, 49, 7807-7811. [Read Online]
  • Polyoxopalladates Encapsulating Yttrium and Lanthanide Ions, [XIIIPdII12(AsPh)8O32]5- (X = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)
    Barsukova, M.; Izarova, N. V.; Ngo Biboum, R.; Keita, B.; Nadjo, L.; Ramachandran, V.; Dalal, N. S.; Antonova, N. S.; Carbó, J. J.; Poblet, J. M.; Kortz, U. Chem. Eur. J. 2010, 16, 9076-9085. [Read Online]
  • Polyoxometalates made of Gold: The Polyoxoaurate [AuIII4AsV4O20]8-
    Izarova, N. V.; Vankova, N.; Heine, T.; Ngo Biboum, R.; Keita, B.; Nadjo, L.; Kortz, U., Angew. Chem. Int. Ed. 2010, 49, 1886-1889. [Read Online]
  • Self-assembly of star-shaped heteropoly-15-palladate(II)
    Izarova, N. V.; Ngo Biboum, R.; Keita, B.; Mifsud, M.; Arends, I. W. C. E.; Jameson, G. B.; Kortz, U. Dalton Trans. 2009, 9385-9387. [Read Online]
  • Heteropoly-13-Palladates(II) [PdII13(AsVPh)8O32]6- and [PdII13SeIV8O32]6-
    Izarova, N. V.; Dickman, M. H.; Ngo Biboum, R.; Keita, B.; Nadjo, L.; Ramachandran, V; Dalal, N. S.; Kortz, U. Inorg. Chem. 2009, 48, 7504-7506. [Read Online]
  • Self Assembly of a Heteropolyoxopalladate Nanocube, [PdII13AsV8O34(OH)6]8-
    Chubarova, E. V.; Dickman, M. H.; Keita, B.; Nadjo, L.; Mifsud, M.; Arends, I. W. C. E.; Kortz, U. Angew. Chem. Int. Ed. 2008, 47, 9542-9546. [Read Online]

» Complete List of Publications